Short Course | Introduction to Data Science 数字化时代,人人都可以学习数据科

2021-08-06 17:13


适合所有人的数据入门课

A Course for All


从零起步 Accessible

用较少的时间和金钱成本进入数据领域;在专业导师的指导下,逐渐熟悉数据领域的概念和基础知识。

Get into data/tech with a lighter cost and commitment;   Develope a familiarity with data terms and knowledge with expertised support.


预备 Preparational

为将来的大学学习、职业转型、数据科学训练营甚至是个人兴趣打基础,培养终身学习的习惯。

Prepare for a deeper dive into data for upcoming univeristy education, career transition, data science bootcamp, personal interest development and a life-long learning.


灵活 Flexible

针对不同学生、不同行业提供个性化的教学,可以自定义进度,却同时保持和其他同学的交流、互相帮助,培养学生更好地适应数字化,发展技术技能。

Support individual's learning process through live session;

Develop knowledge applicable to different industries;

Enable mental adaptability to digitalization and more new technical skills such as web development; Self-pace the study with online engagement with other batch mates.


数据科学短期课程提供新手友好的导论内容,学习数据分析最常用的工具和技能。此短期课程也为Le Wagon沃耕数据科学训练营打下初步基础。


Our Introduction to Data Science Short Course will provide you a beginner-friendly curriculum to explore the most popular tools and skills for Data Analysts today. Intro to DS can even be your first step in preparing for the Le Wagon Data Science bootcamp, if you want to deep dive into a career in data.


01

每周安排 Weekly schedule

周中自学:任意时间段

自行组织时间观看讲课视频,根据要求完成挑战和测试。


线上交流:周二和周四晚(7:30 PM - 9:30PM)

与同班同学和导师线上即时会面,完成小组项目。项目可能是要求你和小组成员在 Tableau 打造一个超市销售量数据报告,或是分析类似网易云听歌 app 的上歌曲数据分析等等。


>> swipe left for English<<


Self Learning: Anytime

Before the beginning of each week, you will need to watch our video walkthroughs, solving a few challenges, and taking a short quiz.


Live Sessions: Tuesday & Thursday (7:30 PM ~ 9:30 PM)

During these live sessions, you'll work with classmates and instructors to complete your course projects. This may be building a sales dashboard for Walmart in Tableau, querying a huge database of government salaries in San Fransisco, or analyzing thousands of songs on Spotify.



02

课程大纲 Curriculum

每一节内容都包括了录制的讲座,详细的演练,互动极强的测试和真实的项目。

Each module of the course comes with recorded videos, detailed walk-throughs, interactive quizzes, and real-world projects.


1.

Tableau

数据化

Data

Visualization with Tableau (6 hrs)

通过创建图表、图形和地图等视觉元素,数据可视化提供了一种查看数据变化模式的简易方式。这个部分,我们将介绍如何使用世界上最流行的数据可视化软件:Tableau 以及该工具的最佳实践。


学习成效:学会使用世界上最流行的数据可视化工具 Tableau 对数据进行整理、组织和可视化。


>> swipe left for English<<


By creating visual elements like charts, graphs, and maps, data visualization provides an accessible way to see patterns in data. During this module, we'll introduce best practices along with how to use the most popular data visualization software in the world: Tableau.

Learning Outcome: Be able to clean, organize, and visualize data in an effective way using the world's most popular data visualization tool: Tableau.



2.

用SQL

查询数据库

Querying Databases with SQL

(6 hrs)

自1995年来,MySQL数据库就持续成为大部分公司最受欢迎的数据储存方式。SQL 是提取并理解身边数据的重要工具。这个部分的课程,我们将带你学习数据库,如果和数据建立联系,如何快速提取数据。


学习成效:理解数据库,掌握如何建立SQL 查询。


>> swipe left for English<<


Since its creation in 1995, a MySQL database is still the most popular method of storing data for any company. SQL is a key skill to extract and make sense of the data all around you. During this module, we'll learn exactly what is a database, how we can establish relationships between our data, and finally how to quickly extract the data we need.

Learning Outcome: Understand what is a database and be able to create simple but effective SQL queries.




3.

用Python

分析数据

Analyzing Data with Python

(6 hrs)

Python 是非常强大的语言,可以几乎无限制地利用并分析数据。很多基础的Python库或是扩展(包括NumPy库和Pandas)都可以通过几行编程有效帮助我们完成复杂的工作。这个部分的课程你将会学习并了解如何使用这个语言。


学习成效:掌握基础的Python知识,用Numpy 和 Panda 进行基础的分析。


>> swipe left for English<<


Python is very powerful and offers nearly unlimited possibilities to analyze your data. Many of the basic Python libraries or extensions, including libraries like NumPy and Pandas enable us to perform complex tasks with just a few lines of code. We'll learn all about this programming language, its use cases, and best practices in this final module.

Learning Outcomes: Learn the basics of python while making basic analysis with libraries like NumPy and Pandas.





Bonus

额外内容:

Machine Learning &

Deep Learning

作为额外课程,我们添加了机器学习和深度学习的概论课。通过学习发现这些技能是如何应用在数据科学领域的。


学习成效:掌握机器学习和深度学习的基本概念,以及它们如何应用在数据科学领域。


>> swipe left for English<<


Python is very powerful and offers nearly unlimited possibilities to analyze your data. Many of the basic Python libraries or extensions, including libraries like NumPy and Pandas enable us to perform complex tasks with just a few lines of code. We'll learn all about this programming language, its use cases, and best practices in this final module.

Learning Outcomes: Learn the basics of python while making basic analysis with libraries like NumPy and Pandas.



03

课程详情 Course Details

这个短期的线上数据分析课程里会包含哪些内容?


20 多个小时的课程内容。包括录制的视频、演练、测验和挑战。


12 小时以上的现场专家指导。每周两次与同学合作完成课程项目,获得导师实时指导,并回答任何与内容相关的问题。


项目评分和反馈。从导师那里获得及时反馈并了解如何提高学习效率。



>> swipe left for English<<


What's included when you register for our upcoming Introduction to Data Science course?

20+ Hours of Course Content. Includes recorded videos, walkthroughs, quizzes, and challenges.

12+ Hours of Live Expert Guidance. Team up with your classmates twice a week to complete course projects, get real-time guidance, and have any content-related questions answered.

Project Grading and Feedback. Get feedback from instructors and understand how to accelerate your learning.


04

学习成果 Course Outcome

终身访问 Slack 以及微信社群与我们在中国各地参与了数据科学入门短期课程的学生和导师社群进行联结。


正式职业证书。获得官方职业技能证书,你可以将其添加到简历、LinkedIn 或个人资料中。




>> swipe left for English<<


Lifetime Access to Slack Community. Connect with our community of students and instructors around China who have enrolled in the Introduction to Data Science course.

Official Certificate of Completion. Receive an official certificate of completion that you can add to your resume, LinkedIn, or personal profile.

>>Swipe for more<<


立即关注我们的微信公众号获取最新课程信息


Are you ready to learn coding?

Subscribe to our WeChat account for more course info

640?wx_fmt=jpeg